
Results From the Porting of
the Computational Fluid Dynamics
Code F3D to the Convex Exemplar

(SPP-1000 and SPP-1600)

by Daniel M. Pressel

ARL-TR-1923 March 1999

Approved for public release; distribution is unlimited.

.

The findings in this report are not to be construed as an official
Department of the Arn~y position unless so designated by other
authorized documents.

Citation of manufacturer’s or trade name-s does not constitute an
offkial endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return
it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-1923 March 1999

.

Results From the Porting of
the Computational Fluid Dynamics
Code F3D to the Convex Exemplar
(SPP-1000 and SPP-1600)

Daniel M. Pressel
Corporate Information and Computing Center, AFU

Approved for public release; distribution is unlimited.

Abstract

This report discusses the continuing efforts to port the F3D computational fluid dynamics
code to RISC-based SMPs. originally, this program was optimized for Cray vector
supercomputers such as the Cray C90. Previous attempts to run this code on SGI Power
Challenges, Convex Exemplars, as well as systems from SUN and Digital Equipment
demonstrated a level of performance that was so low as to be utterly useless (in many cases
it became necessary to kill the job before the first time step had completed). After making a
concerted effort to port the program to an SGI Power Challenge (RSOOO processor),
acceptable levels of performance were finally achieved (Pressell997). Using this version of
the code as the starting point, an effort was made to produce a program that ran efficiently on
both systems from SGI and Convex. Unfortunately, a number of limitations with the Convex
Exemplar were discovered that limited the success of this effort.

ii

Acknowledgments

The author wishes to express his gratitude to Sally Parker of the Space and Naval Warfare

Systems Command (SPAWAR) Systems Center, San Diego, CA (who came into work on numerous

weekends and holidays to reboot the system after it had crashed), and Sharon L. Shaw of Hewlett-

Packard (HP)/Convex for their assistance in providing the resources necessary to carry out this

project. Additionally, he wishes to thank Karen Heavey, Jubaraj Sahu, Ph.D., James Collins, Ph.D.

(formerly of the U.S. Army Research Laboratory [ARL]), Walter Sturek, Ph.D., and Charles

Nietubicz for their contributions to the success of this project.

This work was made possible by the grant of computer time by the Department of Defense

(DOD) High Performance Computing Modernization Program. Additionally, it was funded as part

of the Common High Performance Computing Software Support Initiative (CHSSI) administered

by the DOD High Performance Computing Modernization Program.

The author also wishes to thank Chuck Kennedy and the people of the Survivability/Lethality

Analysis Directorate (SLAD), ARL, for giving him access to their Silicon Graphics Inc. (SGI)

Challenge computer. He also wishes to thank SGI for loaning ARL the additional hardware required

to perform runs out to 36 processors on this system and 18 processors on the Power Challenge

located at the ARL Major Shared Resource Center (MSRC).

.

. . .
111

bTENTIONALLY LEFT BLANK.

iv

Table of Contents

1. Introduction ... 1

2. The Architecture of the SGI Power Challenge ... 3

3. The Architecture of the Convex Exemplar ..~................ 4

4. Performance Issues . 6

4.1 Serial Performance .. 7
4.2 Parallel Performance Using a Single Hypemode .. 14
4.3 Parallel Performance Using Multiple Hypemodes .. 15

5. Results . 20

6. Future Plans . 31

7. Conclusions . 36

8. References . 39

Acknowledgments ..~.....~..~..............................~............~.....~

List of Figures .

. . .
111

vii

List of Tables ..~... ix

Abbreviations . 41

Glossary .. 43

Distribution List .. 45

Report Documentation Page ... 49

.

INTENTIONALLY LEFT BLANK.

vi

List of Figures

Figure m

1.

2.

3.

4.

5.

6,

7.

8.

9.

10.

11.

12.

The Simple Approach to Processing a Plane of Data Using Two Loops That
Sweep Through the Plane in Orthogonal Directions .

Using a Common Outer Loop When Processing a Plan of Data Using Two
Loops That Sweep Through the Plane in Orthogonal Directions .

Using Blocking to Improve Performance When Processing a Plane of Data
Using Two Loops That Sweep Through the Plane in Orthogonal Directions...........

An Alternative Approach to Using Blocking to Improve Performance When
Processing a Plane of Data Using Two Loops That Sweep Through the Plane
in Orthogonal Directions .

An Example of Multiple Levels of Blocking ~...

Performance Results for the 1 -Million Grid-Point Test Case .

Performance Results for the 3-Million Grid-Point Test Case .

A Performance Comparison Between Using Optimation Techniques That
Are Well Suited and Appropriate for Use on Any RISC-Based SMP, and
Using Additional Techniques That Are Specifically Designed to Overcome
the Limitations of the Convex Exemplar .

A Comparison of the Predicted and Measured Levels of Performance for SGI
Challenge and Power Challenge Systems (l-Million Grid-Point Test Case)............

A Comparison of the Predicted and Measured Levels of Performance for One,
Two, and Four Hypemode Subcomplexes on a Convex SPP 1600 (1 -Million
Grid-Point Test Case) .

A Comparison of the Predicted and Measured Levels of Performance for SGI
Challenge and Power Challenge Systems (3-Million Grid-Point Test Case)............

A Comparison of the Predicted and Measured Levels of Performance for One,
Two, and Four Hypemode S&complexes on a Convex SPP 1600 (3-Million
Grid-Point Test Case) .

8

9

10

11

13

21

22

23

32

33

34

35

vii

.

.

INTJWTIONALLY LEFT BLANK.

. . .
Vlll

.

List of Tables

Table

1. Performance Results .

2. Predicted Speedup for a Loop With 15 Units of Parallelism .

PaJg

26

31

.

ix

.

hTENTIONALLY LEFI- BLANK.

.

X

1. Introduction

This project was begun as a result of an effort to run a large memory (1.5 GB) computationally

intensive job on a Silicon Graphics Inc. (SGI) Power Challenge. The code that was selected for this

effort was an implicit 3-D CF’D solver known as P3D (Sahu and Steger 1990). It was already known

that, for the specified problem, this code required a bit under 9 CPU* ruin to run on a Cray C90

(when using one processor) (a bit over 10 CPU min if run as an out of core solver on the same

hardware, when using the solid-state dislc to hold the data not currently resident in main memory).+

Attempts to run the in-core solver version of this code on an SGI Power Challenge (75 MHz, and

again using just one processor) required over 5 hr of CPU time. Obviously, this was not an

acceptable situation. While there were many theories as to what was causing this problem, the

correct answer was that codes that are well-tuned for Cray vector processors are rarely, if ever, well-

tuned to run on RISC-based systems (especially in regard to taking full advantage of cache). There

were some who expressed concerns that this incompatibility either could not be overcome or would

require the use of a different algorithm. Our experience indicated that extensive implementution-

level tuning could overcome most, if not all, of the performance problems. This was an important

conclusion since it allowed us to use the new systems without changing the algorithm (Pressell997).

Once a reasonable level of serial performance had been achieved, there were discussions on how

the program should be parallelized. This was far from being a trivial consideration since

traditionally implicit CFD codes are considered to be inherently diffkult to parallelize. The two

most commonly used techniques are:

(1) Switch to an explicit algorithm, which is easy to parallelize.

* Note: All items in bold type are defined in the Glossary.

’ The test case only involved computing 10 time steps. Production runs frequently involve processing hundreds or even
thousands of time steps and, generally, take many hours to finish

1

(2) Use domain decomposition (frequently, this will require significant changes to the algorithm

if one is to avoid serious degradation to the convergence properties of the algorithm).

A thorough analysis of the problem indicated the possibility that a third solution might exist.

This solution was based on two concepts:

(1) The original version of F3D is highly vectorizable.

(2) Vectorization is a form of parallelism that works at the loop level.

Therefore, in theory, it should be possible to parallelize F3D (and probably most vectorizable

programs) using other forms of parallelism that work at the loop level. Traditionally, this has not

been considered to be the most useful of observations since:

(1) Loop-level parallelism does not in general support the use of large numbers of processors.

Additionally, on traditional MPPs, one needed hundreds, if not thousands, of processors to

achieve supercomputer levels of performance.

(2) On many architectures, it is difficult to show parallel speedup when using this approach.

Furthermore, even when such speedup is demonstrated, the absolute level of performance

tends to be so low as to make the effort useless.

However, technology keeps changing and an analysis of the SGI Power Challenge indicated that

it was an example of a class of computers that should be ideally suited for use with loop-level

parallelism. This class of computers is known as RISC-based cache-coherent shared memory SMPs.

The Convex Exemplar is marketed as being another member of this class of computers.

While there are a number of architectural differences between the two machines, it was hoped

that this approach to optimizing and parallelizing F3D could be made to work efficiently on both the

2

SGI Power Challenge and on the Convex Exemplar This report will discuss how this effect was

approached, what the results were, and the reason for those results.

2. The Architecture of the SGI Power Challenge

Before one can discuss the results of this effort, it is helpful to have a short introduction to the

architectures involved. The SGI Power Challenge can be thought of as the prototypical RISC-based

cache-coherent shared memory SMP. As such, it will be discussed first. From the hardware

perspective, it has the following properties:

(1) Powerful RISC-based processors. In this case, RSOOO processors rated at 300 MFLOPS

each.

(2) This version of the Power Challenge had up to 18 processors and up to 16 GB of memory,

although one could not configure a system with both 18 processors and 16 GB of memory.

(3) Each processor had a large off-chip cache (4 MB).

(4) Hardware protocols maintain the coherency between all of the caches and main memory.

This is a key requirement if shared memory is to be implemented entirely in hardware.

(5) Shared memory is entirely implemented in hardware. All of the boards are connected by a

common system bus that implements a snoopy bus protocol for cache coherency. This bus

gives a uniform memory access time. The speed of the bus is a key limiting factor in

determining how many processors can run in a system at one time without running out of

memory/bus bandwidth.

From the OS perspective, SMP means that the combination of the OS and the hardware have

been designed in such a way as to allow any processor to safely execute any portion of the kernel of

the OS. This is key to avoiding points of contention that would otherwise limit system performance.

3. The Architecture of the Convex Exemplar

The Convex Exemplar is also based on powerful FUSC processors (HP-PA 7100 for the

SPP-1000 and HP-PA 7200 for the SPP-1600). Each processor has a large off-chip data cache

(1 MB) and a separate large off-chip instruction cache (1 MB). The designers of this system realized

that a common system bus connecting all of the boards in a system could severely constrain the

performance and scalability of their system. Therefore, they chose to use a more complicated design.

Some of the key properties of this design are:

(1) Processors are grouped into Hypemodes, with each Hypemode containing 8 processors. The

SPP-1000 supported 128 processors, but with the SPP-1600, the stated maximum system

size was reduced to 64 processors.

(2) At the OS level, Hypemodes are configured into Subcomplexes, with a Subcomplex

containing at least one processor from each of the Hypemodes that make up the

Subcomplex.

(3) Each Hypemode has its own pool of memory (normally either 1 or 2 GB of memory).

(4) Peripherals are directly connected to a Hypemode. Processors on other Hypemodes have

degraded access to nonlocal peripherals. This makes it desirable to give each Subcomplex

its own local scratch partition.

(5) At boot time, the memory on the system is configured for three distinct classes of usage.

This process makes the memory system noticeably less efficient in its use of resources than

4

that of more traditional designs such as the SGI Power Challenge. The three usage classes

are:

l Hypernode local memory (possibly shared among multiple Subcomplexes). This memory

can only be accessed by processors on the same Hypemode. Access to this memory is

much faster than to global memory, but it is of limited value to shared memory jobs

running across Hypemodes.

l A portion of the local memory from each Hypemode that makes up a Subcomplex may

be used to create global memory for that Subcomplex. Global memory is cache coherent,

but, in general, it is noticeably slower to access. There is also a significant limit on the

size of global memory, so that, in general, there will be less than 2 GB of global memory

for a single Subcomplex.

l A portion of the local memory from each Hypemode could also be used to make up what

Convex refers to as the CTI cache. This is a Hypemode level (as opposed to the more

commonly used processor level) DRAM (as opposed to SRAM) cache. It is used to

accommodate the larger latencies associated with accessing global memory.

Unfortunately, given certain design constraints, the larger the size of the CTI cache, the

smaller the maximum size of global memory (even if there is local memory to spare).

(6) The large off-chip data cache uses a cache line size of 32 bytes, which is significantly shorter

than that used by SGI (512 bytes with 128 byte sectors for the R8000 and 128 bytes for the

R4400 and RlOOOO processors).

(7) The TLB on the Hewlett-Packard (HP) processors is smaller than that used on the R8000

processor. Additionally, the Convex Exemplar uses a smaller page size (4 KB vs. 16 KB).

The net result is that while the R8000 TLB is large enough to map 4 MB of memory with

room to spare, the HP TLBs can only map a little under 0.5 MB of memory. When dealing

5

with large data sets, this makes it more likely that the processors on the Convex Exemplar

will thrash their TLBs.

4. Performance Issues
.

There are three main aspects to reviewing the performance of any code on the Convex Exemplar:

(1) Single-processor performance. This includes such topics as:

l The theoretical peak performance of a single processor.

l What percentage of peak performance one gets when using a single processor with local

memory on a dedicated Hypernode and why.

l What percentage of peak performance one is likely to see when using the Convex

Exemplar as a throughput-oriented machine running principally serial jobs.

(2) Parallel-processor performance using a single Hypemode. This is primarily interested in

issues such as the supported programming paradigms and the level of scalability that they

can deliver. It will, however, also cover issues relating to the limitations of using a single

Hypemode.

(3) Parallel-processor performance using processors on multiple Hypernodes. In other words,

How well does Convex’s concept of how to build an SMP compare to those used by SGI in

building the Power Challenge?

The next three sections will, in turn, consider each of these areas.

6

4.1 Se&d Perfonnamce. It was expected that, since both the Convex Exemplar and the SGI

Power Challenge are based on RISC microprocessors using large caches as part of a memory

hierarchy, it should be possible to produce a single code that exhibits a high level of performance

on both machines. However, it was also assumed that there might be some lcey differences between

the machines that would have to be taken into account, The key differences and how they were
1

addressed were:

.
(1) The Convex Exemplar uses a smaller cache than does the SGI Power Challenge. The

original port to the Power Challenge would have shown poor performance for sufficiently

large problem sizes had our Power Challenges had enough memory in them. With the

smaller cache size on the Convex Exemplar, this point was reached much sooner. The

solution to this problem was to block code in a wider range of subroutines. Unfortunately9

not all subroutines were easy to block in two directions. In the one case, where the

subroutine could only be bloclced into strips rather than squares, it was necessary to

parameterize the strip width based on the cache size. Presently, the cache size is a hard-

coded parameter (see Figures l-4 for details).

(2) There are fine differences in the cache structure between the two machines (e.g., cache line

size). These differences tend to make the effective cost of a cache miss to be larger on the

Convex Exemplar (substantially larger when using global memory). As a result, it became

more important to reduce the number of cache misses to the largest extent possible. In some

cases this meant removing optimizations that added cache misses, while only producing a

marginal speedup on the Power Challenge. It was felt that, with the trend toward increasing

processor speeds, this would be a clear win on the next generation of machines from all

vendors. Even so, it should be noted that, when running this code, the Convex Exemplar

spends more time on cache misses than does the Power Challenge.
.

(3) Different machines have different TIB sizes. Additionally, many architectures use two or

more levels of cache. In an attempt to support the widest range of processor designs as

possible, the decision was made to use multiple levels of blocking wherever possible (e.g., in

7

Loop 1 PROBLEM: Regardless of whether one uses C or Fortran 77,
one of the two loops will have a high cache miss rate.

POSSIBLE SOLUTION: Perform matrix transposes.

OBJECTION: Matrix transposes add a lot of overhead while
doing no useful work. In some cases, they will actually
be slower than doing nothing at all.

Loop 2
PREFERRED SOLUTION: See Figure 2.

Figure 1. The Simple Approach to Processing a Plane of Data Using Two Loops That Sweep Through the Plane in Orthogonal
Directions.

.

. ,

Common Outer Loop

Loop 1

Row 2
.
.
.

Row N

Loop 2

ASSUMPTIONS:
(1) There are multiple planes of data being processed by

each loop.

(2) There was an outer loop for each loop that was not

shown in Figure 2 that steps through the planes of
data.

(3) The outer loops for Loop 1 and Loop 2 could be
combined into a common outer loop.

(4) A plane of data fits in cache.

OBJECTION:
The fourth assumption can fail badly for large problem
sizes or small caches.

PREFERRED SOLUTIONS:
See Figures 3 and 4.

Figure 2. Using a Common Outer Loop When Processing a Plan of Data Using Two Loops That Sweep Through the Plane
in Orthogonal Directions.

Common Outer Loop

Loop By Block Number

Loop 1

Current Block

I
. .

Loop 2

I Current Block

ASSUMPTIONS:

Blocked Access of a Plane of Data

. . .

.

.
.

OBJECTIONS:

(1) It is possible to block in both (1) Assumption 1 may be wrong.

directions. (2) Assumption 2 may be suboptimal.

(2) It is practical to use block sizes that PREFERRED SOLUTIONS:

are small enough to fit in the outer- (1) See Figure 4.

most level of cache. (2) See Figure 5.

Figure 3. Using Blocking to Improve Performance When Processing a Plane of Data Using Two Loops That Sweep Through
the Plane in Orthogonal Directions.

.

. L

Common Outer Loop

l *

Blocked Access of a Plane of Data

Loop By Block Number
--m---m------

l

; Loop 1
I
I Current Block
I

I

I

I

I

I
I

I

I

I

I
I

cd
CL I

I
I

I
I
I
I
I
I
I
I
I
I
I
I

I

I
I
I
I
I
I

; REQUIREMENTS:

. . .

: Loop2
I
I Current Block
I
I

I
I
I

I

I
I

I

I

I

I

. . .

I
I

The block width takes into account the number of rows in a
I
I plane, the amount of memory needed per grid point, and the
I
I size of the cache.
: OBJECTIONS:
I
I Generally less efficient than the fully blocked solution in

1
I

-m-m--------- Figure 3.
Figure 4. An Alternative Approach to Using Blocking to Improve Performance When Processing a Plane of Data Using Two

Loops That Sweep Through the Plane in Orthogonal Directions.

matrix transpose routines). This allows one to use a relatively small-block size for the

innermost level of blocking, while still supporting larger block sizes for those machines that

can take advantage of them. However, this created another problem. Small block sizes can

imply a high level of loop overhead, and extra care had to be taken to minimize this effect

(see Figure 5 for details),

(4) The HP-PA 7100 and 7200 processors used by Convex rely upon a multiply-add instruction

for their peak level of performance, The MIPS R8000 processor used by SGI also relies

upon such an instruction” However, there were significant differences in how these two

instructions worked. As such, the instruction on the HP processor favored vector-type code,

although such code is a poor match for architectures using cache. On the other hand, the

instruction used on the MIPS R8000-favored code that was well tuned for RISC processors

and cache in general. As a result, the SGI compilers had no problems making good use of

their multiply-add instruction, while the Convex and HP compilers were rarely able to make

efficient use of their instruction (in fact, for most subroutines, the best performance was

achieved by telling the compiler not to use that instruction). Apparently, this was a

sufficiently common problem that the newer HP-PA 8000 processors have a second

multiply-add instruction that is very similar to that found in the MIPS R8000. Only for one

subroutine (BTRI) was it possible to make good use of the multiply-add instruction

supported by the HP microprocessors, and only then by using the KP compiler rather than

the Convex compiler.

(5) Even though the BTRI subroutine exhibits a vanishingly small cache miss rate on both

machines, it is still the single most expensive subroutine on both machines. As such, it is

important to have the most efficient implementation of this routine as possible. In this vein,

an exquisitely tuned implementation was produced for the Power Challenge that bares a

striking resemblance to assembly code, while maintaining the portability of Fortran. It

turned out that a number of assumptions were made in producing this routine that were not

optimal for the Convex Exemplar, as well as some of the other machines we were looking

at. Therefore, the decision was made to produce a new version of this routine that would

12

Outer Loop By Outer Block Number Blocked Access of a Plane of Data

Middle Loop(s) By Middle Block Number(s)

Inner Loop By Inner Block Number

Current Block

. . .

USE: LIMITATIONS:

When done well, multiple levels of
blocking can produce highly

efficient code that works well with a
wide range of cache and TLB sizes
and designs.

It can be very difficult to use this technique

with any but the most simple loops. In F3D,
its use has been primarily restricted to
matrix transpose operations.

Figure 5. An Example of Multiple Levels of Blocking.

have a smaller foot print in cache (in terms of the size of the scratch arrays) and require

fewer scratch variables be locked into registers for optimal levels of performance. The net

result is a version of the subroutine that significantly outperforms the earlier version of the

code on the Convex Exemplar, runs almost as fast on the R8000 Power Challenge, runs

faster on RlOOOO-based machines from SGI, and is more compatible with the use of larger

numbers of processors on the Convex Exemplar and the SGI Origin 2000.

While there were clearly architectural features that made the performance of this code when

using one processor on a Convex Exemplar to be slightly lower than desired, the level of

performance was more than high enough to justify continuing on to the next stage in this effort. The

main disappointment at this stage was that no way could be found to run jobs with an address space

in excess of 2 GB. This prevented us from running jobs with more than about 3 million grid points.

Even when we parallelized the code across multiple Hypemodes, this problem was never solved,

and, in fact, it became worse due to the more restrictive limits on the amount of global memory a

system could have.

4.2 Parallel Performance Using a Single Hypernode. The parallelization effort within a

single Hypemode went quite smoothly. It was quite simple to translate the SGI-compiler directives

into Convex-compiler directives. Additionally, both sets of compiler directives can coexist in the

same code, which greatly simplifies the job of maintenance. The main issues that arose at this point

were:

(1) Hypemodes only have eight processors. Given the lower peak speed of the processors on

the Convex Exemplar (relative to the SGI Power Challenge), and the somewhat lower

percentage of peak that this program achieves on the Convex Exemplar, being limited to a

maximum of eight processors was frequently undesirable.

.

(2) There were a number of issues that developed with some of the optimization features of the

Convex Fortran compiler being buggy. Since the Convex compiler considers parallelization

to be an optimization level, it was not possible to simply back down to a lower level of

I -

optimization. Instead, it was necessary to identify which optimizations were buggy and then

use suboptions to disable those features In contrast, the SGI approach, which considers

parallelization and optimization to be separate features, made it much easier to deal with

compiler limitations.

(3) It was found to be less convenient to control a number of important system parameters

(e.gag maximum stack size) on the Convex Exemplar than on other commonly used

machines.

(4) When running on a dedicated Subcomplex, it was found that one could obtain a modest

improvement in performance by having the processors spin forever when sitting at spin

Ilocks. However, if the Subcomplex were shared with other users, this could result in a

serious drop in performance if the Subcomplex became even slightly overloaded (i.e., more

than eight processes running on a single Hypemode). Similar issues exist on the SGY Power

Challenge, but the unusual architecture of the Convex Exemplar seemed to substantially

increase the frequency with which overloading occurred.

In summary, the effort to use multiple processors on a single Hypernode was quite successful.

However, the limited performance that one saw when using a single Hypernode gave a strong

impetus to the desire to parallelize across Hypernodes.

4.3 Parallel Performance Using Multiple Hypernodes. The parallelization effort when using

multiple Hypemodes was a more complicated undertaking. Four issues had to be addressed:

(1) How should one go about using multiple Hypemodes?

(2) Once one has decided how to use multiple Hypemodes, one has to actually make the

approach work. At times the documentation was not always clear on this point, resulting in

a number of false starts.

15

(3) 1s there any tuning that can/should be done at the system level that can improve

performance?

(4) Finally, are there any additional types of tuning that are unique to this environment?

These issues will now be considered in greater detail:

(I) There are three main ways in which a program can be parallelized across multiple

Hypernodes:

l Parallelize the program using message passing code, and only message passing code. This

method might, in fact, have produced better results than the method that was selected (at

least for programs that lend themselves to message passing). However, it would have

meant producing a very different version of the code, and that violated the intent of this

exercise.

l Parallelize the program entirely using compiler directives. This was an obvious

continuation of the work that was already under way. Additionally, since the Convex

Exemplar had been selected based on its support for the shared memory programming

paradigm, this appeared to be a fair test of the machine.

l There are those who advocate using multiple levels of parallelism within a single program.

If this approach had been selected, then one would probably use compiIer directives within

the individual Hypemodes, with message passing code between Hypemodes. This method

was rejected for two main reasons. It seemed to violate the intent of the exercise, and it

represented a major commitment of resources.

(2) Having decided to treat the Convex Exemplar as if it was a traditional shared memory

architecture (e.g.9 uniform memory access), it was necessary to figure out how to do this.

By using the system-level command MPA, one can cause the threads to be spread over as

16

many processors in a single Subcomplex as one desires. However, this does not mean that

the memory is also spread over the Subcomplexes. By default, all of the memory is local

to the IIypernodes, and this will cause the program to bomb. One can use MPA. to make

some or all of the memory global, but this raises questions such as:

e Which arrays should be global?

@ How does one differentiate between the different arrays?

4 Is there enough global memory in the system?

In general, one can make thread local data structures reside in Hypernode local memory for

performance reasons and place all of the remaining data structures in global memory. This

can be easily implemented using MPA. Additional tests were run placing certain arrays in

local memory (this usually worked best for relatively invariant data, in which case, the entire

array was replicated on each Hypemode), While this did have a measurable impact on

performance, in general, the impact was too small to justify the effort, or the waste of

memory.

A major problem was that even though the system being used had four Hypernodes with a

total of 8 GB of memory, system limitations prevent one from configuring the system with

more than 2 GB of global memory (the actual limit is somewhat less than that and is

dependent on a number of factors that are beyond the scope of this report). However, this

made it difficult to run some jobs that could easily be run when using either a single

Hypernode on the Convex Exemplar or on the SGI Power Challenge. In some cases, it was

possible to shoehorn a job in by placing certain arrays in local memory, but this was clearly

an undesirable kludge.

(3) A major problem with placing so many arrays in global memory is that the average memory

latency for accessing global memory is significantly larger than it is for accessing local

memory. In an attempt to minimize this effect, the Convex Exemplar is equipped with the

ability to use a portion of each HypeArnode’s memory as an extremely large cache. This is

the CT1 cache that was mentioned earlier, and it can be 64, 128, 256, or 512 MB per

Hypernode in size. With help from Sally Parker and Sharon Shaw, the effect of using CTI

caches with 64, 128, and 256 MB of memory was measured (the effort to use 512 MB of

memory ran into problems and was abandoned). For this program, the 256-MB size

produced the best results, allowing the program to run about 22% faster.

(4) As previously mentioned, one can attempt to maximize the number of arrays that are kept

in local memory, Unfortunately, this will frequently mean duplicating entire arrays on all

of the Hypemodes, and that can tie up a lot of memory. Even worse, the process of

initializing those arrays will substantially increase the startup time. This is partly due to

significant contention that this can create in the memory system. Additionally, there is the

problem that if the Subcomplex has N Hypemodes in it, the amount of work being

performed at startup is now N times greater. In some cases, tradeoffs were made between

computation and memory accesses. Given the increased cost of the memory accesses, it

became clear that in most cases it was better to do the computation. It also was clear that

as processors became faster, this would be the correct optimization on an ever increasing

number of systems. Similarly, this analysis indicated that efforts should be made to

minimize the number of cache misses associated with writing to arrays residing in global

memory (e.g., minimize the use of matrix transpose operations in favor of other methods that

can minimize the number of cache and TLB misses).

Considering the rather sizable performance hit one takes by using global memory, an interesting

question is, Why was the CT1 cache not more effective at reducing the penalty for using global

memory? A related question is, Why were the other efforts to minimize/eliminate these penalties

not more successful? There are several answers to these questions:

(1) Access patterns can change from one loop to the next (e.g., one loop may be parallelized in

the J direction, while the next one might be parallelized in the K direction). While it is

18

sometimes possible to minimize this effect, it cannot be eliminated. There are two

consequences to this effect:

e Data from relatively invariant arrays might be stored in the CTI cache of more than one

Hypemode. This wastes a valuable resource,

e Cache misses associated with writes are always more expensive than cache misses

associated with reads. Since certain arrays are updated by almost every loop in the

program, one can expect to have an unavoidably large number of write misses associated

with those arrays. In some cache cases, this effect can be so large as to call into question

the benefit of the CTH. Unfortunately, in general, there is no practical manner in which

these arrays can be stored in local memory,

(2) Attempts to minimize the number of accesses to global memory have costs associated with

them. This may be the cost of doing additional calculations. 0r this may be the cost of

copying the data to local memory in all of the Hypernodes. Regardless of the nature of the

costs, what is important is that one is not replacing a cost X with a cost 0. Rather, one is

replacing a cost X with a cost Y, where U is less than X.

(3) Manually copying arrays to local memory in each Hypernode has a limited amount of

scalability associated with it (one will get at best a parallel speedup of M, where in this case

M is the smallest number of processors being used by this job in any of the Hypernodes).

This makes this process inherently expensive, but it is of some value for arrays that are

PargePy invariant. However, for arrays that change every time step, using this approach.

becomes unacceptably expensive.

(4) Some of the techniques used to reduce the number of matrix transpose operations also had

the effect of creating loops where all of the processors would be walking through a set of

pages in memory at the same time and in the same order. This created additional contention

in the memory system, which limited the potential for parallel speedup in those loops.

Overall, this optimization was still a win, but once again it was not a zero cost win.

From this analysis, one can see that system designs that use very large DRAM caches (either in

the form of a CTI cache or COMA) are likely to exhibit significant performance problems that

cannot be entirely eliminated.

There are several commonly used metrics that one could use as a measure of how successful this

project has been. While it is generally not practical to apply every possible metric to a project, the

following discussion should give a fair assessment of lhis project.

One major aspect of this project was to gauge how successful Convex was in extending the

shared memory programming paradigm. In this respect, it is less important as to whether or not

Convex was successful than it is to have confidence in the conclusions. As this report indicates, it

was assumed that some additional modifications and tuning would be required. As Figures 6 and

7 indicate, the efforts involving local memory were relatively successful. Therefore, it is safe to

assume that most of the limitations in performance have to do with how Convex extended the shared

memory paradigm and were not a failure on our part to effectively tune the code for their machine.

Additionally, as Figure 8 indicates, the efforts to tune the code for parallelization across Hypemodes

(e.g., replicating certain arrays in the local memory on each Hypemode) clearly demonstrated the

performance problems associated with the use of global memory. Unfortunately, it also

demonstrated that shared memory solutions to the problem were of limited value and were generally

not acceptable for use on a production code in a production environment.

From this, it can be concluded that Convex’s extension to the shared memory paradigm was not

very successful. Does this mean that the Exemplar is a bad machine? Not necessarily. It might be

a good choice for message passing code. It might also be a reasonable choice for a throughput-

20

0

Hf-iOH Eld Sd3lS 3VJIl NI Ci33dS

21

22

? \ i

tiLlOH Md Sd31S Elb’Jll NI ClEEldS

23

oriented environment where jobs would not be parallelized across Hypemodes. It just means that

Convex failed to meet one of their more important design goals. This is important since there are

other choices that one can make for throughput and message passing environments that might not

require the same design tradeoffs that Convex made in designing this system.

Another key point was establishing that it was possible to write well-tuned code that would be

portably efficient across shared memory environments from multiple vendors. So long as one only

looks at the results for local memory in Figures 6 and 7, it would appear as though this goal was

achieved. That it was far less successful when it came to runs involving global memory should be

considered to be a limitation of the hardware, rather than a flaw in the basic concept.

This research was conducted as part of a CPISSI project. As such, one goal should certainly be

to deliver efficient usable software. Therefore, a key question (after determining that the answers

were correct-one of many services that Karen Heavey supplied as part of this project) is how well

did the software perform relative to our expectations ? Before one can answer that question, one

needs to determine what those expectations were. Many people have argued that loop-level

parallelism will not produce speedups in excess of a factor of 4-16 (depending on who one talks to

and which system they are talking about). In some cases, this conclusion is based on some

supposedly fundamental limitation of using loop-level parallelism. In other cases, this conclusion

was based on the limitations of using a bus-based design (a major reason why Convex went with a

more scalable design). Therefore, it would have been nice to see better than a factor of 4-16 speedup

when using this code on multiple processors.

Another metric is to look at how well the code performed on the Exemplar vs. various bus-based

systems from SGI. In theory, there are two reasons why the Exemplar should have outperformed the

SGI boxes. First, with a theoretical peak speed for 30 processors of 7.2 GFLOPS, the machine was

12-200% faster than the SGI systems it is being compared to. Secondly, its performance is not hurt

by the negative impact of using a bus-based design.

24

One final metric in this area is how does the performance of the code on the SGI and Convex

machines stack up against the performance of the vector code running on one processor of a C90.

Obviously, if the code does not run at least as fast on the new machines as on the C90, the value of

this effort will be in doubt, Ideally, the new machines should either outperform the C90 run and/or

be significantly more cost effective to use. For this part of the metric, we assume an allocated cost

of about $2 million for one processor of the C90. For the SGI systems, we assume that each of the

three systems we looked at could be had for under $1 million (the exact amount is, of course,

configuration dependent). For the Convex Exemplar, the allocated cost for a single Hypernode is

again assumed to be under $1 million, while a four Hypemode system would cost between

$1 million and $2 million.*

If one looks at Figures 6 and 7 and Table I9 several things become clear:

(1) All1 of the platforms (including considering a single Hypemode of a Convex Exemplar using

local memory to be a platform) were able to equal or exceed the performance of a single

processor of a C90. In all cases, this was achieved both in terms of performance and the

price-performance ratio that can be equally important in a throughput-oriented production

environment (a common use of Cray vector computers).

(2) The Convex Exemplar was in no way the fastest of the platforms. In fact, it was only

slightly faster than the SGH Challenge, which it should have comfortably beaten by a factor

of two.

(3) All three of the SGI systems do show some performance degradation that is in large part due

to the limited bus and memory bandwidth of these systems. However, this effect was found

* SGI and Convex supplied the cost data for their systems, while the allocated cost for one processor of a C90 is based
on data found on the National Aeronautics and Space Administration (NASA) Ames web server.

25

Table 1. Performance Results

Note: Speedups relative to a single processor were computed based on single-processor runs using local memory.

.

to be manageable and in no way represents an impenetrable wall that makes it impossible

to make effective use of more than a handful of processors.

(4) Similarly, at this point, there seems to be no inherent limits to the use of loop-level

parallelism with up to 36 processors, and possibly more. The biggest single limit at this

point is the requirement/desirability of working in an efficient shared memory environment,

and that current designs do not support unhmited numbers of processors. It is likely that this

limit is to some extent inherent with this class of machines, although the Convex Exemplar

is clear evidence that the vendors are attempting to extend the range of supported system

sizes,

In order to better judge how well the code is performing on each of the machines, one needs to

have a very good idea as to how well the code would perform on an ideal machine with a simi%ar

configuration. While different groups may approach this problem in different ways, the approach

that was used in this case was based on the following assumptions and principles:

(1) The version of F3D that has been used on Cray vector platforms at NASA Ames and the

U.S. Army Research Laboratory (ARL) for many years is acceptably efficient on those

platforms (Sahu and Steger 1990; Sahu 1990).

(2) The actual performance of a code on other platforms is highly dependent on a number of

factors” One of the more important factors is how well the tuning of the code has been

optimized for the platform being used. While in theory this tuning can be performed either

manually or by a compiler, it is our belief that a combination of those techniques will

produce the best results. Therefore, this model will assume that the code has been

aggressively tuned by hand and compiled with a state-of-the-art optimizing compiler (with

an appropriate selection of optimization options turned on).

(3) When considering the serial performance of the code, it is difficult to predict how well the

code should perform on any given machine. However, since the vendors frequently market

27

their systems on the basis of peak performance, this report will assume that the predicted

serial performance will be proportional to the peak speed of the processors. Furthermore,

the measured speed of the vector optimized code on a Cray C90 will be used as the basis for

predicting the speed of the code on other machines. This does not mean that this

relationship will always hold. For most machines, there are well-known classes of codes

that perform poorly on a given machine. Sometimes, this has to do with memory access

patterns, while in other cases, it may be an indication that the code is not vectorizable

(Kaufmann and Smarr 1993). Even so, given the marketing policies of most major computer

companies, this seems like a reasonable place to start. The following are two final notes as

to how this will be done:

0 There can be significant variations in startup and termination costs from one system to the

next. Additionally, in general, the sections of code responsible for these costs either

cannot be parallelized or show limited speedup when they are parallelized (e.g., due to

interaction with the OS and/or I/O devices). If one were to obtain fully converged

solutions involving runs lasting for over 1,000 time steps, these costs might not be very

important. However, it is impractical to perform such measurements for all of the runs

that are required when carrying out this type of study. Instead, shorter runs were used with

the run times adjusted in an effort to remove the startup and termination costs.

e When comparing the performance of a code running on multiple machines, the actual

number of operations performed per second is of secondary importance. What is really

important is how long does the run take to complete. Since this project made every effort

not to change either the algorithm or its behavior, the run time should be proportional to

the time required to perform a single time step (after making the adjustments mentioned

in the previous paragraph). Therefore, all measurements of speed will be made in time

steps per hour, One key advantage to this strategy is that different architectures may

benefit from different optimization strategies. Furthermore, since it is reasonable to

assume that these strategies will result in different numbers of operations being performed

28

(sometimes by more than a factor of two)s this policy will allow us to concentrate on the

only performance metric that is important to the user:

Time to completion.

(4) When considering parallel performance, one might hope for linear speedup, but there are

three main problems with this hope:

l For fixed-sized problems, one may run out of available parallelism. If this happens, then

the best one can hope for is linear speedup up until that point, with no additional speedup

past that point.

0 Even when one does not run out of available parallelism, there are a number of reasons

why, for fixed-sized problems, one is unlikely to see linear speedup for very large numbers

of processors (e.g.? Amdahl’s law, communication and synchronization costs) (Ahnasi and

Cottheb 1994).

l Linear speedup simply predicts that the relationship between speed and the number of

processors used is of the formr

Speed = A + B * N,

where A and B are constants and N is the number of processors being used. Frequently, A is

assumed to zero, although when fitting a curve to actual data, this need not be the case. The real

problem arises when one rewrites this equation as:

Speed = A + C * D * N,

29

where B = C * D and C is the speed of the code when. using a single processor. In this case, if .A is

nonzero, D will not equal 1.0. This implies that even though the speedup is linear, doubling the

number of processors need not double the speed of the system.

Similarly, if A = 0.0 and D = 1.0, but C is a smalI fraction of the percentage of peak performance

for a single processor, one may see linear speedup and still fail to meet the overall performance goals

of the project.

(5) A common solution to the issues in paragraph 4 on the previous page is to talk about

something called scaled speedup (Gustafson 1988). The main problem with scaled speedup

is that it assumes that the available parallelism is proportional to the problem size. While

for many of the algorithms commonly used on large parallel computers, this assumption is

correct, for many classes of algorithms, this assumption is dead wrong. Unfortunately, for

this code, the available parallelism is roughly proportional to the cube root of the problem

size. This means that in order to use 64 processors, the problem size would need to be

262,144 times the size of the problem that one would normally solve using just one

processor. Clearly, under these conditions, scaled speedup is not a useful metric.

(6) At this point, it will be assumed that the correct scaling function is a stairstep, with the exact

shape of the curve depending on the grid dimensions (see Table 2 for an example of how this

curve naturally arises when using loop-level parallelism), For sufficiently large problem

sizes (or small numbers of processors), this curve will closely approximate linear speedup

(and with the assumptions for serial performance, this is a meaningful result). It will also

be assumed that secondary effects such as Amdahl’s law and communication and

synchronization costs can be ignored, since most shared memory systems have only a few

processors. Hardware effects such as limited memory bandwidth will also be ignored, since

the extent to which measurements deviate from the predicted levels of performance will be

a good metric of how well the system is living up to expectations.

30

Number of Processors

1
2

Maximum Units of Parallelism
Assigned to a Single Processor

15
8

Predicted Speedup

1 .ooo
1.875

4 4 3,750
5-7 3 5.000

8-14 2 7.500

Figures 9- 12 show the predicted and measured results for a variety of SGI and Convex systems.

If one looks at the results for the SGI Challenge system, one will see excellent agreement between

the measured and predicted levels of performance. This is strong evidence that the methodology

used has merit. If one considers the SGI Power Challenge and SC1 RlOK Power Challenge, one

does see some deviations from the predicted performance when using larger numbers of processors.

Overall, however, the agreement between predicted performance and measured performance is still

pretty good. The same can also be said about the Convex Exemplar when using up to eight

processors with local memory on a single Hypernode, However, results when using more than eight

processors on a Convex Exemplar are very disappointing.

At the present time, several additional efforts relating to this code are underway. Some of these

are:

(1) Marek Behr, Ph.D., of the U.S. Army High Performance Computing and Research Center

(AHPCRC) has been porting the same code to the Cray T3D and other traditional distributed

memory RISC-based MIMD MPPs. The author has been collaborating with him to share

some of his serial optimizations with this effort.

3%

1

kILlOH t13d Sd31S 3PJll NI Cl33dS

.

32

kILlOH ki3d Sd31S 3Wll NI Cl33dS

33

0
0

HflOH kl3d Sd31S 3Wll NI Cl33dS

34

t
t

kInOH Eld SdXS 3b’W NI ElEldS

35

(2) James Collins, Ph.D., ARL, is currently adding several additional modules to this code,

including an implementation of the CHIMERA code,

(3) James Collins, and Jubaraj Sahu, Ph.D., ARL, and others are beginning .work on a formal

plan to revalidate the tuned code.

(4) The author has begun initial investigations to identify and, if necessary, correct any problems

that might occur when the problem is scaled to even larger sizes. Unfortunately, most of the

currently delivered systems either lack sufficient memory and/or sufficient address space to

handle problems that are significantly larger than those used in this study.

(5) Some of the routines currently in the F3D code were neither optimized (other than to the

extent necessary to maintain their validity) nor parallelized. While many of these routines

are so fast that there was no need to tune them, a significant percentage of the untuned

routines are computationally intensive, but were not used in processing the benchmark case.

Eventually, it would be desirable if some effort was made to either improve the speed of

these routines or to delete them from the standard distribution,

% Conclusions

It is now clear that some-probably many, but possibly not all--computationally intensive codes

can be tuned so that a meaningful range of problem sizes can be run with an acceptable level of

performance on the current generation of RISC-based shared memory SMPs. Having said that, it

is also clear that transitioning code to these machines will be far from the plug-and-play process

many potential users are hoping for. When performing this work, it is highly desirable to have the

same code work on more than one vendor’s product line. This effort shows that, in general, it is

possible to achieve such a goal. However, it has also shown that since the design of some machines

is better than the design of other machines, the results will not, in general, be uniformly good. This

is not a new conclusion, nor is it unique to shared memory platforms running programs parallelized

36

using loop-level parallelism. However, given the limited number of vendors currently making these

systems for the high performance computer market, this conclusion is more important than migRt

otherwise be the case.

37

.

INTENnONALLY LEFT BLANK.

38

8. References

Ahnasi, G. S., and A. Gottlieb. Highly Parallel Computing. Redwood City, CA: The
Ben@ninCummings Publishing Company, Inc., second edition, 1994,

. Gustafson, J. L. “Reevaluating Amdahl’s Law.” Communications of the ACM, vol. 31, no. 5,
pp* 532-533, May 1988.

. Kaufmann, W. J. III, and L. L. Smarr. Supercomputing and the Transformation of Science. New
York, NY: Scientific American Library, 1993.

Pressed, D. M. “Early Results From the Porting of the Computational Fluid Dynamics Code, F3D,
to the Silicon Graphics Power Challenge,” ARL-TR-1562, U.S. Army Research Laboratory,
Aberdeen Proving Ground, MD, December 1997.

Sahu, J. “Numerical Computations of Transonic Critical Aerodynamic Behavior.” American
Institute for Astronautics and Aeronautics Journul, vol. 28, no. 5, pp. 807-816, May 1990 (also
see BRLTR-2962, December 1988).

Sahu, J., and J. L. Steger. “Numerical Simulation of Transonic Flows.” International Journal for
NumericalMethods in Fluids, vol. 10, no. 8, pp. 855-873,199O.

39

hTENTIONALLY LEFT BLANK.

40

Abbreviations

AHPCRC

CHSSI
DOD
HP
MSRC
NASA
Nwsc
SGI
SLAD

U.S. Army High Performance Computing and Research Center
U.S. Army Research Laboratory
Common High Performance Computing Software Support Initiative
Department of Defense
Hewlett-Packard
Major Shared Resource Center
National Aeronautics and Space Administration
Naval Warfare System Center
Silicon Graphics Inc.
Survivability/Lethality Analysis Directorate

41

.

hTENTIONALLY LEFT BLANK.

42

Glossary

Cache

CFD
CHIMERA
CHSSI
COMA
CPU
DRAM
Fortran
GFLOPS
I/O
MFLOPS

MPA
MPP
OS
RISC
SMIP
SILOI
thrashing a TLB

TLB

a high-speed memory used to temporarily store data that has recently been
accessed, or is likely to be accessed in the near future

computational fluid dynamics
a method for handling overlapping zones
Common High Performance Computing Software Support Initiative
cache only memory architecture
central processing unit
dynamic random access memory
the most commonly used scientific programming language
giga floating-point operation per second
input/output
mega floating-point operation per second
multiple i.nstructionlmultiple data
a system utility on convex systems
massively parallel processor
operating system
reduced instruction set computer
symmetric multiprocessor
static random access memory
to have a high rate of TLB misses, which in the limit can approach (or even
in some rare instances exceed) one miss per memory access

translation lookaside buffer

43

.

.

INTENTIONALLY LEFT BLANK.

44

NO. OF
ORGANIZATION COPIES

2 DEFENSE TECHNICAL
INFORMATION CENTER
DTIC DDA
8725 JOHN J KINGMAN RD
STE 0944
FT BELVOIR VA 22060-6218

1 HQDA
DAMOFDQ
DENNIS SCHMIDT
4.00 ARMY PENTAGON
WASHINGTON DC 203 lo-0460

1 OSD
OUSD(A&‘I)/ODDDR&E(R)
RJTREW
THE PENTAGON
WASHINGTON DC 20301-7100

1 DPTY CG FOR RDE
usARMYMATERIELcMD
AMCRD
MG CALDWELL
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

1 INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTJN
PO BOX 20797
AUSTIN TX 78720-2797

1 DARPA
B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

1 NAVAL SURFACE WARFARE CTR
CODE B07 J PENNELLA
17320 DAHLGREN RD
BLDG 1470 RM 1101
DAJILGREN VA 22448-5100

NO. OF
COPIES ORGANTZATION

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL D
RWWHALIN
2800 POWDER MILL RD
ADELPHJ MD 20783-l 145

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRLDD
J J ROCCHJO
2800 POWDER MILL RD
ADELPHI MD 20783-l 145

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CS AS (RECORDS MGMT)
2800 POWDER MJLL RD
ADELPHI MD 20783-l 145

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI LL
2800 POWDER MJLL RD
ADELPHI MD 20783-l 145

ABERDEEN PROVING GROUND

4 DIR USARL
AMSIU CI LP (305)

1 US MILITARY ACADEMY
MATH SC1 CTR OF EXCELLENCE
DEPT OF MATHEMATICAL SC1
MAJMDPHJLLIPS
THAYER HALL
WEST POINT NY 10996-1786

45

NO. OF
ORGANIZATION COPIES

1 PM CHSSI
J GROSH
SUITE 650
1110 N GLEVE ROAD
ARLINGTON VA 2220 1

1 ARMY HJGH PERFORMANCE
COMPUTING RSRCH CTR
M BEHR
SUITE 101
1100 WASHINGTON AVE SOUTH
MINNEAPOLIS MN 55415

1 COMMANDER
CODE C2892 C HOUSH
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555

1 WLFIMC
s SCHERR
BLDG 450
2645 FIFT’H ST SUITE 7
WPAFB OH 45433-7913

1 NSWC
CODE B44 A B WARDLAW
SILVER SPRING MD 20903-5640

1 NAVAL RSRCH LAB
CODE 6400 J BORIS
4555 OVERLOOK AVE SW
WASHINGTON DC 20375-5344

1 WLFIMC
B STRANG
BLDG 450
2645 FIFTH ST SUITE 7
WPAFB OH 45433-7913

1 NAVAL RSRCH LAB
CODE 6410
RRAMAMURTJ
WASHINGTON DC 20375-5344

1 ARMY AEROFLIGHT
DYNAMICS DIR
RMEAKIN
MS 258 1
MOFFETT FIELD CA 94035-1000

NO. OF
COPIES ORGANIZATION

1

1

1

1

1

1

1

1

1

1

NAVAL RSRCH LAB
CODE 7320
J W MCCAFFREY JR
STENNIS SPACE CENTER MS 39529

US AIR FORCE WRIGHT LAB
WLFIMJJSSHANG
2645 FIFI-H STREET STE 6
WPAFB OH 45433-7912

USAF PMLIPS LAB
OLAC PL RKFE
CPT S G WIERSCHKE
10 EAST SATURN BLVD
EDWARDS AFB CA 935247680

USAE WATERWAYS
EXPERIMENT STATION
CEWES I-IV C J P HOLLAND
3909 HALLS FERRY ROAD
VICKSBURG MS 39180-6199

US ARMY RSRCH LAB
AMSRL PS E B S PERLMAN
FT MONMOUTH NJ 07703

NCCOSC RDT&E DIV NR4D
CODE 404 R A WASILAUSKY
53570 SILVERGATE AVE
SAN DIEGO CA 92152-5180

US AIR FORCE ROME LAB
RL OCTS R W LINDERMAN
GRIFFISS AFB NY 13441-5700

NCCOSC RDTE DV NRAD
CODE 7601T K BROMLEY
5 180 SILVERGATE AVE
SAN DIEGO CA 92152-5180

DIRECTOR
DEPT OF ASTRONOMY
PROF P WOODWARD
356 PHYSICS BLDG
116 CHURCH STREET SE
MINNEAPOLIS MN 55455

DIRECTOR
ARMY HIGH PERFORMANCE
COMPUTING RSRCH Cl-R
TTEZDUYAR
1200 WASHINGTON AVE
SOUTH MINNEAPOLIS MN 55415

46

NO. OF
ORGANIZATION COPIES

1 DIRECTOR
ARMY HIGH PERFORMANCE
COMPUTING RSRCH CTR
B BRYAN
1200 WASHINGTON AVE
SOUTH MINNEAPOLIS MN 55415

1 DIRECTOR
ARMY HIGH PERFORMANCE
COMPUTING RSRCH CTR
G V CANDLER
1200 WASHINGTON AVE
SOUTH MINNEAPOLIS MN 55415

1 NAVAL CMND CONTROL AND
OCEAN SURVEILLANCE CTR
L PARNELL
NCCOSC RDTE DIV D3603
49590 LASSING ROAD
SAN DIEGO CA 92152-6148

1 SPAWARSYSCEN D4123
S PARKER
RM331
53 140 SYSTEMS ST
SAN DIEGO CA 92152-7560

ABERDEEN PROVING GROUND

15 DIRUSARL
AMSRL CI c NIETUBICZ
AMSRL CI HA w STUREIS
AMSRL CI HC
D PRESSEL
D HISLEY
C ZOLTANI
J GROSH
A PRESSLEY
TKENDALL
P DYKSTRA
AMSRLSCSAMARK
AMSRLWMB
H EDGE
JSAHSJ
K HEAVEY
P WEINACHT
AMSRL WM TC K ISTMSEY

47

hTENTIONALLY LEFI- BLANK

48

b

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704.0188

results From the Porting of the Computational Fluid Dynamics Code F3D to the
Ionvex Exemplar (SPP-1000 and SPP-1600)

6 11102H4800

Daniel M. Pressel

J.S. Army Research Laboratory
ilTN: AMSRL-CI-HC
Aberdeen Proving Ground, MD 210055067

AGENCY REPORT NUMBER

Il. SUPPLEMENTARY NOTES

12a. DlSTRIBUTlON/AVAlLABlLlTY STATEhiENT

kpproved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT(Maximum 200 words)

This report discusses the continuing efforts to port the F3D computational fluid dynamics code to RISC-based SMPs
Xginally, this program was optimized for Cray vector supercomputers such as the Cray C90. Previous attempts to rur
his code on SGI Power Challenges, and Convex Exemplars, as well as systems from SUN and Digital Equipment
demonstrated a level of performance that was so low as to be utterly useless (in many cases, it became necessary to kiI
the job before the first time step had completed). After making a concerted effort to port the program to an SGI Powel
Challenge (RSOOO processor), acceptable levels of performance were finally achieved (Pressell997). Using this versior
of the code as the starting point, an effort was made to produce a program that ran effkiently on both systems from SG
and Convex. Unfortunately, a number of limitations with the Convex Exemplar were discovered that limited the succes!
of this effort.

14. SUBJECT TERMS 15. NUMBER OF PAGES

50
computational fluid dynamics, supercomputing, high-performance computing 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
.lc.l-,CAn n. n”n rcnn Cl~....hw..4 lzr- *cl* ,Ps.r o-Qcl\

49
“LalIUal” I “llll LU” \r,or. G-WC.,

Prescribed by ANSI Std. 239-l 8 298-l 02

hTENTIONALLYLEFTBLANK.

50

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-TR-1923 (pressel) Date of Report March 1999

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will
be used.)

9 4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs
avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,
technical content, format, etc.)

CURRENT
ADDRESS

Organization

Name E-mail Name

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old
or Incorrect address below.

i

OLD
ADDRESS

Organization

Name

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFIUAL BUSINESS

FIRST CLASS PERMIT NO 0001 ,APG,MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR
US ARli’lY RESEARCH LABORATORY
ATTN AMSRL Cl HC
ABERDEEN PROVING GROUND MD 210054067

